Sains Malaysiana 54(9)(2025): 2287-2300
http://doi.org/10.17576/jsm-2025-5409-15
Modeling of Gross Domestic Product with Foreign
Direct Investment using
Lotka-Volterra Equations
(Pemodelan Keluaran Dalam Negara Kasar dengan Pelaburan Langsung Asing menggunakan Persamaan Lotka-Volterra)
MOHAMMAD
KHATIM HASAN*, NOOR ASHIKIN OTHMAN & BAHARI IDRUS
Centre for
Artificial Intelligence Technology, Faculty of Information Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 31
December 2024/Accepted: 9 July 2025
Abstract
This
paper investigates the dynamic interaction between Gross Domestic Product (GDP)
and Foreign Direct Investment (FDI) using two distinct numerical methods: The
Fourth-Order Runge-Kutta (RK4) method on
Lotka-Volterra model and a family of Least-Squares (LS) methods. The study aims
to provide a comparative analysis of these methods in terms of their accuracy,
efficiency, and applicability in modeling the complex
relationship between GDP and FDI. The RK4 method is employed to model the
dynamic system governing the interaction between GDP and FDI. This method is
chosen for its robustness in handling non-linear systems and its ability to
provide precise numerical solutions with minimal computational error. On the
other hand, the least squares method provides a static approximation by fitting
a linear or nonlinear relationship between GDP and FDI. The paper conducts
simulations using real-world data on GDP and FDI from Malaysia spanning the
years 2009 to 2020. The results obtained from both methods are compared to
assess their performance. The RK4 method on Lotka-Volterra model demonstrates
superior accuracy in capturing the dynamic behavior of the GDP-FDI interaction, particularly in scenarios involving rapid changes
or non-linear dynamics.
Keywords: Dynamic
interaction; Foreign Direct Investment (FDI); Fourth-Order Runge-Kutta (RK4); Gross Domestic Product (GDP); Lotka-Volterra
(LV)
Abstrak
Kertas ini mengkaji interaksi dinamik antara Keluaran Dalam Negara
Kasar (KDNK) dan Pelaburan Langsung Asing (PLA) dengan menggunakan dua kaedah berangka yang berbeza: Kaedah Runge-Kutta Tertib Keempat (RK4) pada
model Lotka-Volterra dan satu keluarga kaedah Kuasa Dua Terkecil.
Kajian ini bertujuan untuk memberikan analisis perbandingan antara kaedah ini dari segi ketepatan, kecekapan dan kebolehgunaan dalam memodelkan hubungan kompleks antara KDNK dan PLA. Kaedah RK4 digunakan untuk memodelkan sistem dinamik yang mengawal interaksi antara KDNK dan PLA. Kaedah ini dipilih kerana keteguhannya dalam mengendalikan sistem bukan linear dan keupayaannya memberikan penyelesaian berangka yang tepat dengan kesilapan pengiraan yang minimum. Sebaliknya, kaedah kuasa dua terkecil memberikan suatu anggaran statik dengan memadankan hubungan linear atau tak linear antara KDNK dan PLA. Kertas ini menjalankan simulasi menggunakan data
dunia sebenar KDNK dan PLA dari Malaysia bagi tempoh 2009 hingga 2020. Hasil yang diperoleh daripada kedua-dua kaedah ini dibandingkan untuk menilai prestasi mereka. Kaedah RK4 pada model Lotka-Volterra menunjukkan ketepatan yang lebih tinggi dalam mencerap tingkah laku dinamik interaksi KDNK-PLA, terutamanya dalam senario yang melibatkan perubahan pantas atau dinamik bukan linear.
Kata kunci: Interaksi dinamik; Keluaran Dalam Negara
Kasar (KDNK); Lotka-Volterra (LV); Pelaburan Langsung Asing (PLA); Runge-Kutta Tertib Keempat (RK4)
REFERENCES
Agosin, M.R. & Mayer, R. 2000. Foreign
investment in developing countries: Does it crowd in domestic investment? Oxford
Development Studies 28(2): 149-162.
Alfaro, L., Chanda, A., Kalemli-Ozcan,
S. & Sayek, S. 2004. FDI and economic growth: The
role of local financial markets. Journal of International Economics 64(1): 89-112.
Ang, J.B. 2008. Determinants of foreign
direct investment in Malaysia. Journal of Policy Modeling 30(1): 185-189.
Borensztein, E., De Gregorio, J. & Lee, J.W. 1998.
How does foreign direct investment affect economic growth? Journal of
International Economics 45(1): 115-135.
Campbell, J.Y., Lo, A.W. & MacKinlay, A.C. 1997. The Econometrics of Financial
Markets. Princeton: Princeton University Press.
De Mello, L.R. 1997. Foreign direct
investment in developing countries and growth: A selective survey. Journal
of Development Studies 34(1): 1-34.
Department of Statistics of Malaysia. 2023.
[Online Database].
Fox, J. 2016. Applied Regression
Analysis and Generalized Linear Models. 3rd ed. Sage Publications.
Görg, H. & Greenaway, D. 2004. Much ado
about nothing? Do domestic firms really benefit from foreign direct investment? The World Bank Research Observer 19(2): 171-197.
https://doi.org/10.1093/wbro/lkh019
Gui-Diby, S.L. 2014. Impact of foreign
direct investments on economic growth in Africa: Evidence from three decades of
panel data analyses. Research in Economics 68(3): 248-256.
https://doi.org/10. 1016/j.rie.2014.04.003
Hasan, M.K., Othman, N.A. & Idrus, B. 2022. Data-driven macro-economic model analysis
using non-standard trimean algorithm. In Intelligent Systems Modeling and Simulation II. Studies in Systems, Decision
and Control, edited by Abdul Karim, S.A. Springer, Cham. p. 444.
https://doi.org/10.1007/978-3-031-04028-3_9
Hasan, M.K., Othman, N.A. & Idrus, B. 2019. Relationship analysis of Malaysian gross
domestic product and foreign direct investment using numerical method with
optimization approach. International Journal of Advanced Science and
Technology 28(16): 410-416.
Hasan, M.K., Karim, S.A.A. & Sulaiman,
J. 2015. Graphical analysis of Rosenzweig-MacArthur model via adams-moultan and fourth order Runge-Kutta methods. Proceedings of the 2015 International Conference on Electrical
Engineering and Informatics (ICEEI), Denpasar, Indonesia. pp. 670-675. doi: 10.1109/ICEEI.2015.7352583
Helene, O., Mariano, L. &
Guimarães-Filho, Z. 2016. Useful and little-known applications of the Least
Square Method and some consequences of covariances. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 833: 82-87.
https://doi.org/10.1016/j.nima.2016.06.126
Hirsch, M.W., Smale, S. & Devaney, R.L.
2013. Differential Equations, Dynamical Systems, and an Introduction to
Chaos. 3rd ed. Massachusetts: Academic Press.
Hussain, K., Ismail, F. & Senu, N. 2016. Solving directly special fourth-order
ordinary differential equations using Runge–Kutta type method. Journal of Computational and Applied Mathematics 306:
179-199. https://doi.org/10.1016/j.cam.2016.04.002
Joo, B.A. & Shawl, S. 2023.
Understanding the relationship between foreign direct investment and economic
growth in BRICS: Panel ARDL Approach. VIKALPA The Journal for Decision
Makers 48(2): 100-113.
Lean, H.H. & Tan, B.W. 2011. Linkages
between foreign direct investment, domestic investment and economic growth in
Malaysia. Journal of Economic Cooperation and Development 32(4): 75-96.
Mohamed, M.R., Jit Sing, K.S. & Liew,
C.Y. 2013. Impact of foreign direct investment & domestic investment on
economic growth of Malaysia. Malaysian Journal of Economic Studies 50(1): 21-35.
Montgomery, D.C., Peck, E.A. & Vining,
G.G. 2021. Introduction to Linear Regression Analysis. 6th ed. New York:
John Wiley & Son.
Mustafa, T. & Idris, A.R. 2021. The
foreign direct investment and economic growth in Malaysia: An OLS approach. Journal
of Contemporary Social Science Research 5(1): 30-39.
Mwakabungu, B.H.P. & Kauangal,
J. 2023. An empirical analysis of the relationship between FDI and economic
growth in Tanzania. Cogent Economics & Finance 11(1): 2204606.
https://doi.org/10.1080/23322039.2023.2204606
Mwinuka, L. & Mwangoka,
V.C. 2023. Manufacturing sector’s growth in Tanzania: Empirical lessons from
macroeconomic factors, 1970–2021. Cogent Economics & Finance 11: 1.
https://doi.org/10.1080/23322039.2023.2223419
Nguyen, M.L.T. 2022. Foreign direct
investment and economic growth: The role of financial development. Cogent
Business & Management 9(1): 2127193. DOI: 10.1080/23311975.2022.2127193
Pineiro, G., Perelman, S., Guerschman, J.P. & Paruelo,
J.M. 2008. How to evaluate models: Observed vs predicted or predicted vs.
observed? Ecological Modelling 216: 316-322.
Ratkowsky, D.A. 1983. Nonlinear
Regression Modeling: A Unified Practical Approach.
New York: Marcel Dekker.
Reddy, T.A. & Henze, G.P. 2023. Linear
regression analysis using least squares. In Applied Data Analysis and Modeling for Energy Engineers and Scientists. Springer,
Cham. pp. 169-221. https://doi.org/10.1007/978-3-031-34869-3_5
Seber, G.A.F. & Wild, C.J. 2003. Nonlinear
Regression. New York: John Wiley & Sons Inc.
Sijabat, R. 2023. The association between foreign
investment and gross domestic product in ten ASEAN countries. Economies 11(7):
188. https://doi.org/10.3390/ economies11070188
Sima, D.M., Van Huffel, S. & Golub,
G.H. 2004. Regularized total least squares based on quadratic eigenvalue
problem solvers. Bit Numer. Math. 44: 793-812.
https://doi.org/10.1007/s10543-004-6024-8
Sumner, A. 2005. Is foreign direct
investment good for the poor? A review and stocktake. Development in
Practice 15(3-4): 269-285. https://doi.org/10.1080/ 09614520500076183
Wang, D., Yin, J., Tang, T., Chen, X. &
Wu, Z. 2018. Quadratic constrained weighted least-squares method for TDOA
source localization in the presence of clock synchronization bias: Analysis and
solution. Digital Signal Processing 82: 237-257.
https://doi.org/10.1016/j.dsp.2018.08.002
Wooldridge, J.M. 2016. Introductory
Econometrics: A Modern Approach. 6th ed. Massachusetts: Cengage Learning.
Wu, L. & Liu, S. 2013. Using grey
Lotka-Volterra model to analyze the relationship
between the gross domestic products and the foreign direct investment of Ningbo
city. Proceedings of 2013 IEEE International Conference on Grey Systems and
Intelligent Services (GSIS). pp. 265-268.
*Corresponding author; email:
mkh@ukm.edu.my